If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10n^2-95n-50=0
a = 10; b = -95; c = -50;
Δ = b2-4ac
Δ = -952-4·10·(-50)
Δ = 11025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{11025}=105$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-95)-105}{2*10}=\frac{-10}{20} =-1/2 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-95)+105}{2*10}=\frac{200}{20} =10 $
| 8-2(5-3y)=-3(-2y+1) | | x-180=3/4 | | -7=12a-65 | | A(n)=–5•2n–1 | | X2+5x+36=0 | | 2/3x+6=206 | | 180=x+109××89 | | 7v-4=2(v+8) | | 9x=30= | | 7p-(3p+4)=-10 | | -1=4j+10 | | -5/9v=20 | | -2(y-2)=9y-7 | | 8=-2/9y | | 2(7f-4)=5+3(1+2f) | | 3x+16=1.44 | | -8w+5(w-5)=-7 | | -3n-3=39 | | 3/7x+4=-8 | | 5-x/3+2x-4=45 | | -5/26+m=(-7/13) | | 7(-2+m)=-7 | | 6=4(u+5)-6u | | (28-b)^2+b^2=400 | | 9/10x-7=8 | | b^2+28b+192=0 | | 3x^2-5=-43 | | -4/3x=-28 | | m+-5/26=-7/13 | | 6x+x=20 | | 7x-4x-12=0 | | -7/9v=49 |